Mimicking natural dentin using bioactive nanohybrid scaffolds for dentinal tissue engineering.
نویسندگان
چکیده
Synthetic materials mimicking the internal porous structure of natural dentin were prepared as nanohybrid matrix scaffolds made of poly(ethyl methacrylate-co-hydroxyethyl acrylate), pure and with a sol-gel-derived interpenetrated silica nanophase, with aligned tubular pores in the micrometer range typical of dentinal tissue. Some of them were internally coated with a layer of hydroxyapatite by immersion in simulated body fluid. Their physicochemical and mechanical properties were investigated. The different types of scaffolds were implanted subcutaneously into immunocompromised nude mice for 4, 6, and 8 weeks and their biological response were analyzed. Optical microscopy was employed to study the scaffold structure and neovascularization. Cells origin, inflammation, and macrophagic responses were evaluated by optical microscopy, immunohistochemistry, and transmission electron microscopy. The scaffold ultrastructural pattern imitates dentinal histological structure. The materials allowed cell colonization and neoangiogenesis. These biomaterials were colonized by murine cells fenotypically different to those of dermal connective tissue, showing structural differentiations. Colonization and viability were improved by the use of mineralized interphases, which showed a cellular distribution resembling a neodentinal pattern. Invasion of the scaffold tubules by single odontoblast-like processes was ascertained both in the noncoated and coated scaffolds. Such materials thus seem promising in tissue engineering strategies for dentin regeneration.
منابع مشابه
Preparation and characterization of PCL polymeric scaffolds coated with chitosan/ bioactive glass/gelatin nanoparticles using the tips methodology for bone tissue engineering
Objective(s): The present study aimed to prepare polycaprolactone (PCL) scaffolds with high porosity and pore interconnectivity, in order to copy the microstructure of natural bones using the thermally induced phase separation (TIPS) technique. Materials and Methods: The scaffolds were coated with chitosan (CH), bioactive glass (BG), and gelatin nanoparticles (GEL NPs) and assessed using ...
متن کاملBiomimetic Scaffold with Aligned Microporosity Designed for Dentin Regeneration
Tooth loss is a common result of a variety of oral diseases due to physiological causes, trauma, genetic disorders, and aging and can lead to physical and mental suffering that markedly lowers the individual's quality of life. Tooth is a complex organ that is composed of mineralized tissues and soft connective tissues. Dentin is the most voluminous tissue of the tooth and its formation (dentino...
متن کاملBioactive scaffolds mimicking natural dentin structure.
Organic scaffolds of poly(ethyl methacrylate-co-hydroxyethyl acrylate) [P(EMA-co-HEA)] 70/30 wt % ratio, with varying proportions of silica SiO(2) from 0 to 20 wt % and aligned tubular pores, were prepared using a fiber-templating fabrication method, with the aim of mimicking structure and properties of the mineralized tissue of natural dentin. Precursors of the copolymer and silica were simult...
متن کاملCells and Extracellular Matrices of Dentin and Pulp: a Biological Basis for Repair and Tissue Engineering.
Odontoblasts produce most of the extracellular matrix (ECM) components found in dentin and implicated in dentin mineralization. Major differences in the pulp ECM explain why pulp is normally a non-mineralized tissue. In vitro or in vivo, some dentin ECM molecules act as crystal nucleators and contribute to crystal growth, whereas others are mineralization inhibitors. After treatment of caries l...
متن کاملImproving the mechanical and bioactivity of hydroxyapatite porous scaffold ceramic with diopside/forstrite ceramic coating
Objective(s): Scaffolds are considered as biological substitutes in bone defects which improve and accelerate the healing process of surrounding tissue. In recent years a major challenge in biomaterials is to produce porous materials with properties similar to bone tissue. In this study, the natural bioactive hydroxyapatite scaffolds with nano Diopside /Forstrite coating was successfully synthe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tissue engineering. Part A
دوره 16 9 شماره
صفحات -
تاریخ انتشار 2010